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1. INTRODUCTION

Parallel processing is widely used for solving computation intensive problems. Parallel
algorithms have been implemented on parallel supercomputers, networked
workstations, and combinations of workstations and supercomputers. One common

approach in solving large CFD problems is to utilize block-structured solution schemes.
The original domain is divided into a series of blocks. The parallel code then distributes
the blocks among a set of networked computers. While each computer processor is
responsible for solving one block of data it has to communicate with others during the
execution of the parallel code. One can define the parallel code in terms of a series of
block and interface solvers (Akay, 1993). While the block solver is for computing the
solution for a block, the interface solver is for exchanging information between block
boundaries. The execution time of each process is affected by several time-varying

factors, e.g., the load of computers, the load of the network, the solution scheme used
for solving each block, and sizes of blocks. Therefore, some processes may finish
much earlier than other processes and wait for information from other processes. Such

waiting significantly increases the program execution time and decreases the efficiency
of the system. Dynamic load balancing (DLB) is a tool to propedy distribute the
processes among computers to ensure the communication time and the waiting time
are minimized (Chien, 1994). To increase the efficiency and speed of parallel
computation, the computation load should be distributed to computers in such a way
that the elapsed execution time of the slowest computer is minimized. DLB is essential
for efficient use of complex and dynamic parallel and distributed computing resources.

Parallel algorithms allow the utilization of multiple computers for a single job. The
speed of a parallel algorithm is measured in terms of number of processors which can
be accessed without loosing parallel efficiency. The main objective of the present effort
is to run parallel codes on all available computer resources at any given time. This
includes clusters of parallel supercomputers and networked workstations
communicating through complex networks. The specific problem is to distribute the

parallel job to available processors in a most efficient way. It is assumed that available
computers are heterogeneous: operating under UNIX and NT operating systems.
There are several clusters or computers connected to each other with different



networks and scheduled by different system managers: LSF, PBS, Load Leveler.
Multi-user environment is considered: there are several parallel jobs running on the
system. When the computers by different owners need to be accessed and many
parallel jobs need to be executed, the efficient utilization of resources becomes a difficult

task. The DLB scheme is developed for improving the efficiency of parallel computing
in such an environment. More important, the load-balancing task is defined as a

responsibility of the owner of the application program rather than the system manager.
As mentioned above, block-structured solution schemes are supported. It is assumed
that the problem is divided into a number of blocks which is greater than the number of
available processors. The division of the grid is performed only once. Either greedy or
genetic algorithms are utilized for calculating the distribution of the number of blocks
among available processors.

Previously reported load balancing techniques commonly assumes that there is only one
parallel job running on a given set of computers. This assumption is valid when the same
owner owns all the computers for parallel processing and the owner can dedicate a setof
computers for a particular parallel process, whe-n-rfia-fi_, owners own_the compu{em and
many parallel jobs need to be executed on these computers, the reservation of dedicated

time for a parallel process becomes difficult, in a multi-user environment, multiple
parallel jobs may be executed concurrently on the same set of computers. One
unsolved problem in parallel processing is how to distribute multiple mutually dependent
parallel jobs among computing resources to achieve optimal computation speed for
each parallel job. When the mutually dependent load is not balanced, computers that
finish the computation early need to wait the other computers periodically in order to
collect essential information to proceed further, thus loosing their share of computing
resources and not achieving the best computation speed. When load balancers for
single parallel jobs are used together, conflicts of interests makes them to interfere with
each other. In this paper, we introduce a new load balancing method which addresses
multiple parallel jobs. The objective is to ensure that every parallel job, as well as the
entire system is load balanced.

2. BASIC DLB PROCEDURE

The basic assumptions of DLB are as follows:

• There are large numbers of computers available in different locations, which are
managed by different owners.

• At the initiation of the run a set of available computers is defined by the user. The
user can access all or any subset of these computers.

Each of the multi-user computers is operating under Unix or Windows NT.

The parallel application software is running MPI or PVM as shown in figure 1.
it is assumed that the job will take several hours, possibly all evening.

A load balancing cycle is defined, e.g., 20-40 minutes, which is larger than the time
required to move the jobs around.
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Figure 1. DLB Environment

The dynamic load balancing capability includes the following:

• Software assigned to each computer to measure computer and network speed.
• A load-balancing tool assigned to each parallel job to optimize the load distribution.
A master coordinator is not needed while each cluster or computer may be running under

a different job scheduler. The basic procedure, which is shown in figure 2, can be
summarized as follows:

Measure and Estimate Computation Cost Parameters During a DLB Cycle:

1) The speed of the computer,
2) The computation cost of each process on a given computer; and,
3) The total number of active processes on that computer.

Measure and Estimate Communication Cost Parameters During a DLB Cycle:

1) The speed of the network; and,
2) The communication cost of sending each message on a given network.

The unit of cost is defined as elapsed time. A cost function is defined as the elapsed time

to complete the slowest process. This cost functions is then minimized at the end of each
cycle to calculate the optimal load distribution for a given job. The jobs are re-distributed
and the process is repeated. The procedure allows for abandoning busy processors and
utilizing additional processors when they are available. Different optimization algorithms
can be utilized to minimize the cost function: Greedy, Genetic and mixed Genetic-Greedy

algorithms have been implemented.
t
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Figure 2. DLB Procedure

3. DLB TOOLS

The DLB package provides several tools.

Stamp Library: The stamp library is a collection of functions which can be called by C or
FORTRAN programs. They can be embedded into CFD programs, and they gather the
timing information related to both the CFD program and the computer network.

Ctrack: in order to estimate the elapsed execution time for the CFD blocks, information
about the communication speed between all computers is needed. The CTrack-
Communication Tracker program supports communication speed measurement.

Ptrack: Both UNIX and NT are multi-user and multi-tasking Operating Systems (OS).
CPU time is shared by all concurrently running processes. The number of parallel CFD
processes running on each machine is defined and Ptrack (process tracker program)
finds the average number of processes belonging to other users, (extraneous load).
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Balance: This is designed for load balancing. Balance predicts the computation and

communication costs of any given load distribution. It finds a time optimal load

distribution for the next execution cycle.

DLB Monitor: This tool initializes the computation and communication cost model while

running the application program simultaneously with Ptrack and Ctrack. It gathers the
time stamp and PtracldCtrack results from all parallel computers for load balancing.

RCopy & Rspawn: Rcopy copies files from/to remote NT and Unix based computers
using message-passing libraries which are necessary for gathering data for load

balancing. Rspawn executes system commands (or applications) on remote NT and Unix

based computers.

Others: Several UNIX tools useful for DLB, for example, ps, killit and cat were developed
for Windows NT.

4. DLB EXAMPLES

Two test cases are presented to illustrate the basic concept of DLB. Both cases include
64 blocks.

In the first case the following processors were available:

6 Processors of the IBM RS/6000 Cluster, CFD Lab, IUPUI, Indianapolis

(iwl-iw6);
10 Processors of the Windows NT PC-Cluster, CFD Lab, IUPUl, Indianapolis

(ipl-ip7, ip9-ip13); and
8 Processors (Thin node 2SC)of the IBM SP, IU, Bloomington, Indiana

(bl -b8).
One processor of the IBM RS/6000 Cluster computing the application is approximately

10% faster than the nodes bl to b5 in Bloomington, 30 - 40% faster than nodes b6 to b8

in Bloomington and nine times faster than one of the PC's since the application was

compiled without optimization. Initial distribution involved 3 blocks on each processor at
the PC-Cluster and at the SP in Bloomington, I or 2 blocks at the RS/6000s of the CFD

Lab as shown in figure 3. The balanced distribution is also shown. Elapsed time for the
run was reduced 1379 seconds to 371 seconds.

The second case involved the following processors:

6 Processors of the IBM RS/6000 Cluster, CFD Lab, IUPUI, Indianapolis, Indiana,

(iwl-iw6);

8 Processors (Thin node 2SC)of the IBM SP, lU, Bloomington, Indiana

(bl - b8);
8 Processors (Thin node 2) of the iBM SP, RUS, Stuttgart, Germany

(sl - s8); and

10 Processors of the Windows NT PC-Cluster, CFD Lab, IUPUI, Indianapolis,

(ipl, ip4-ip7, ip9-ip13).
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One processor of the IBM RS/6000 Cluster IUPUI, computing the application is nearly 4
times faster than the SP nodes in Stuttgart. Initial distribution and the distribution after the
DLB is shown in figure 4. The elapsed time for this case is reduced from 1271seconds to
345 seconds.
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Figure 3a. DLB Test Case 1" Original Distribution
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Figure 4b. DLB Test Case 2: Load Balanced Distribution

5. MULTI_USER DLB

5.1. Problem description
The following assumptions are used for the development of load balancing tools for
multiple parallel jobs:
1) Every user can use all available hosts (computers).
2) A DLB Monitor is associated with each parallel job. The DLB monitor is responsible

for the load balancing of that particular parallel job.

3) A DLB Monitor can request information about computation load and communication
speed of any computer.

4) A DLB Monitor only has the detailed knowledge of its own application. It only knows
the number of processes generated by the other users on each host (extraneous
loads). It does not have the details of the parallelism for these jobs.

5) The DLB Monitor may request information from any number of hosts for the parallel
jobs. However, the DLB monitor determines the optimal number of hosts to be used
for the parallel job.

6) Each DLB Monitor suggests a new load distribution to the computers for the parallel
job.

The task of the load balancer for multiple parallel jobs is to ensure that the DLB monitors
do not interfere with each other. In other words, load distribution suggested by a DLB
monitor should not affect the balance of other currently executing parallel jobs.

5.2. Dynamic load balancing for multiple parallel jobs

In a multi-user environment, multiple parallel jobs may be executed concurrently on the
same set of computers. Therefore, different DLB monitors may have conflicting
interests. In order to resolve the conflict, a higher level manager may be needed. In
the proposed approach, distributed DLB monitors for each application resolve conflicts
without the aid of a higher level manager.
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5.2.1 The organization of the software tools

The organization of the software tool, shown in figure 5, is as follows:
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Figure 5. Organization of Software Tools for Load Balancing of Multiple Parallel Jobs

1) A DLB monitor is associated with each parallel job.

2) One coordinator demon is running on every host. Each coordinator can manage
multiple DLB monitors. The duty of the coordinator is to support the DLB monitors
that run on the same host. The coordinator helps the DLB monitors on the host to
send messages to and receive messages from the coordinators on other hosts.

3) One system monitor is running on each computer to gather local computer and
network speed information.
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4) The coordinator communicates with the system monitor to obtain the local system
information.

5) Each DLB monitor requests information of computation load and communication
speed of any available hosts through coordinators.

6) The tools are able to support different optimization methods for load balancing.
7) Load balancing is performed in a distributed manner. There is no need for a higher

level manager. This requirement is essential since hundreds or more hosts from
different organizations may be used for parallel computing by a variety of
applications. The breakdown of any host should not affect the load balancing ability
of other hosts. As indicated in the figure, access to different hosts can be achieved
through Globus.

5.2.2 The load-balancing algorithm

The organization of the software tools supports the efficient exchange of information
between DLB monitors. There are several possible approaches to use the shared
information for load balancing. In this paper, we discuss the round robin load-balancing
algorithm. In round robin load balancing, each parallel job can stop its execution and
request load balancing at any time. However, the system only allows one parallel job to
perform a load balance at any particular time. Load balancing for multiple parallel jobs
is then performed in sequence.

The basic idea for this approach is as follows: It is assumed that the computers are
multiple-user and multiple-process computers, for example operating under Windows
NT and/or Unix. It is also assumed that the application processes on each computer
have the same execution priority. Therefore, the CPU power of a computer is equally
divided among all application processes executing on that computer. In a multiple-
processing environment, if one process does not fully use the given time slice, then the
CPU power will be shared by the other processes on that computer. The responsibility
of the load balancing coordinator is to monitor the computer load, the network load, and
communicate with all parallel processes executing on the computer. To prevent any
conflict of interest, only one DLB monitor is allowed to load balance at each time
instance. For this purpose, all the computer hosts participating in the parallel
computing form a token ring. A token is passed among the hosts. Only the DLB
monitor on the host that has the token is allowed to perform load balancing. If there are
more than one DLB monitors on a host, the coordinator allows the DLB monitors to

perform load balancing one after another.

6. CONCLUSIONS

This paper studies an optimization algorithm for the load balancing of multiple parallel
processes belonging to different users, competing for the same resources. It is assumed
that (1) a parallel process does not have detailed knowledge of other parallel
processes, (2) each parallel process has its own Ioad-balancer, and (3) each parallel
process can share its load distribution on any computer with other parallel processes

9



that use the same computer. There is a load balancing coordinator on each computer
for sharing information between the users. It monitors the computer load, the network
load, and communicates with all parallel processes executing on that computer. Under
such conditions, a DLB monitor can load balance a specific parallel application without
the aid of a higher level manager.
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